How the Really Big Stars Form
Astronomers think they’ve got a handle on how Sun-sized stars come together. But the formation of the largest stars - more than 10 times the mass of the Sun - still puzzle astronomers. New observations on a 20 solar mass star have revealed that these giant stars maintain a torus of material around themselves. They can continuously feed from this “doughnut” of material, while powerful jets of radiation pour from their poles. The material can continue gathering onto the star while avoiding this radiation, which would normally blast it back into space.
Astronomers using the National Science Foundation’s Very Large Array (VLA) radio telescope have discovered key evidence that may help them figure out how very massive stars can form.
“We think we know how stars like the Sun are formed, but there are major problems in determining how a star 10 times more massive than the Sun can accumulate that much mass. The new observations with the VLA have provided important clues to resolving that mystery,” said Maria Teresa Beltran, of theUniversity of Barcelona in Spain .
Beltran and other astronomers fromItaly and Hawaii studied a young, massive star called G24 A1 about 25,000 light-years from Earth. This object is about 20 times more massive than the Sun. The scientists reported their findings in the September 28 issue of the journal Nature.
Stars form when giant interstellar clouds of gas and dust collapse gravitationally, compacting the material into what becomes the star. While astronomers believe they understand this process reasonably well for smaller stars, the theoretical framework ran into a hitch with larger stars.
“When a star gets up to about eight times the mass of the Sun, it pours out enough light and other radiation to stop the further infall of material,” Beltran explained. “We know there are many stars bigger than that, so the question is, how do they get that much mass?”
One idea is that infalling matter forms a disk whirling around the star. With most of the radiation escaping without hitting the disk, material can continue to fall into the star from the disk. According to this model, some material will be flung outward along the rotation axis of the disk into powerful outflows.
“If this model is correct, there should be material falling inward, rushing outward and rotating around the star all at the same time,” Beltran said. “In fact, that’s exactly what we saw in G24 A1. It’s the first time all three types of motion have been seen in a single young massive star,” she added.
The scientists traced motions in gas around the young star by studying radio waves emitted by ammonia molecules at a frequency near 23 GHz. The Doppler shift in the frequency of the radio waves gave them the information on the motions of the gas. This technique allowed them to detect gas falling inward toward a large “doughnut,” or torus, surrounding the disk presumed to be orbiting the young star.
“Our detection of gas falling inward toward the star is an important milestone,” Beltran said. The infall of the gas is consistent with the idea of material accreting onto the star in a non-spherical manner, such as in a disk. This supports that idea, which is one of several proposed ways for massive stars to accumulate their great bulk. Others include collisions of smaller stars.
“Our findings suggest that the disk model is a plausible way to make stars up to 20 times the mass of the Sun. We’ll continue to study G24 A1 and other objects to improve our understanding,” Beltran said.
Beltran worked with Riccardo Cesaroni and Leonardo Testi of the Astrophysical Observatory of Arcetri of INAF inFirenze , Italy , Claudio Codella and Luca Olmi of the Institute of Radioastronomy of INAF in Firenze , Italy , and Ray Furuya of the Japanese Subaru Telescope in Hawaii .
The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Original Source: NRAO News Release
Astronomers using the National Science Foundation’s Very Large Array (VLA) radio telescope have discovered key evidence that may help them figure out how very massive stars can form.
“We think we know how stars like the Sun are formed, but there are major problems in determining how a star 10 times more massive than the Sun can accumulate that much mass. The new observations with the VLA have provided important clues to resolving that mystery,” said Maria Teresa Beltran, of the
Beltran and other astronomers from
Stars form when giant interstellar clouds of gas and dust collapse gravitationally, compacting the material into what becomes the star. While astronomers believe they understand this process reasonably well for smaller stars, the theoretical framework ran into a hitch with larger stars.
“When a star gets up to about eight times the mass of the Sun, it pours out enough light and other radiation to stop the further infall of material,” Beltran explained. “We know there are many stars bigger than that, so the question is, how do they get that much mass?”
One idea is that infalling matter forms a disk whirling around the star. With most of the radiation escaping without hitting the disk, material can continue to fall into the star from the disk. According to this model, some material will be flung outward along the rotation axis of the disk into powerful outflows.
“If this model is correct, there should be material falling inward, rushing outward and rotating around the star all at the same time,” Beltran said. “In fact, that’s exactly what we saw in G24 A1. It’s the first time all three types of motion have been seen in a single young massive star,” she added.
The scientists traced motions in gas around the young star by studying radio waves emitted by ammonia molecules at a frequency near 23 GHz. The Doppler shift in the frequency of the radio waves gave them the information on the motions of the gas. This technique allowed them to detect gas falling inward toward a large “doughnut,” or torus, surrounding the disk presumed to be orbiting the young star.
“Our detection of gas falling inward toward the star is an important milestone,” Beltran said. The infall of the gas is consistent with the idea of material accreting onto the star in a non-spherical manner, such as in a disk. This supports that idea, which is one of several proposed ways for massive stars to accumulate their great bulk. Others include collisions of smaller stars.
“Our findings suggest that the disk model is a plausible way to make stars up to 20 times the mass of the Sun. We’ll continue to study G24 A1 and other objects to improve our understanding,” Beltran said.
Beltran worked with Riccardo Cesaroni and Leonardo Testi of the Astrophysical Observatory of Arcetri of INAF in
The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Original Source: NRAO News Release
6 Comments:
Have you seen this?? rofl
http://www.planetaryinvestments.com/
I am the kind of hombre who enjoys to taste innovative stuff. Currently I'm fabricating my personalized photovoltaic panels. I am managing it all alone without the help of my staff. I'm using the internet as the only path to acheive that. I encountered a very brilliant site which explains how to create solar panels and so on. The internet site explains all the steps involved in solar panel construction.
I'm not sure bout how precise the info given there iz. If some experts over here who have xp with these works can have a look and give your feedback in the site it would be great and I would extremely treasure it, cause I truly enjoy [URL=http://solar-panel-construction.com]solar panel construction[/URL].
Thanks for reading this. U guys rock.
Hey guys,
I'm here online for the children of Haiti.
I'm doing this for a non-profit group that devotes themselves to
building an oppurunity for the children in haiti. If anyone here wants to donate then this is the place:
[url=http://universallearningcentre.org]Donate to Haiti[/url] or Help Haiti
They provide children in Haiti a positive learning environment.
Please check them out, they are legitimate.
Please help us
Certainly. So happens. Let's discuss this question.
Your blog keeps getting better and better! Your older articles are not as good as newer ones you have a lot more creativity and originality now. Keep it up!
And according to this article, I totally agree with your opinion, but only this time! :)
Can I just say what a relief to find someone who actually knows what theyre talking about on the internet. You definitely know how to bring an issue to light and make it important. More people need to read this and understand this side of the story. I cant believe youre not more popular because you definitely have the gift.
Post a Comment
<< Home